Redigerer
Spenntre
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
{{kildeløs}} Et '''spenntre''' er en sammenkobling av et sett noder, der alle kan nå alle, via en eller flere linker. Det er et [[tre (datastruktur)]], i den forstand at det ikke har rundturer (sykluser); det finnes bare en enkelt sti mellom ethvert par noder i et spenntre. I og med at alle linker kobler to noder sammen, er antall linker i et spenntre lik antall noder minus 1. [[Fil:Minimum spanning tree.svg|thumb|200px|Et nett med noder og kanter. Hver link har en kostnad og er farget grå, med mindre den ligger i det minimale spenntre. Det kan finnes flere minimale spenntrær, men disse vises ikke.]] Treets kostnad er summen av hver links kostnad. Et '''minimalt spenntre''' (MST) er det rimeligste spenntre av alle mulige; man kan finne flere MST med lik kostnad. MST er viktige i [[datakommunikasjon]], der målet er å rimeligst mulig, spre meldinger innenfor en gruppe. Alle vil da sende over de linker som er definert i gruppens MST. Minimalisering av spenntrær er også viktig for å finne rimeligste linjeutlegging for [[strømforsyning]] og [[kabel-TV]]. Innen [[grafteori]] har man utviklet måter for å beregne spenntrær. For å finne MST starter man med en tom mengde MST, og legger til trygge linker, en i gangen, inntil alle noder er i samme MST. Man kan finne MST med [[Prims algoritme]], der man legger til den rimeligste linken, inntil alle noder er tatt med i MST. Under arbeidet er nodene delt inn i to nodesett: De som er med i MST, og de som enda ikke er med. Alternativt, kan man bruke [[Kruskals algoritme]] som legger til nye linker i stigende rekkefølge, uansett om det gir et slikt to-delt nodesett. Disse kan være noe forskjellige hva angår kjøretid. I praktiske situasjoner har man nett der noder og linker tilkommer og forsvinner over tid, slik at spenntrær må omberegnes. Som eksempel nevnes [[Spanning tree protocol]], som sier hvordan man i et [[datanett]] skal samsnakke for å vedlikeholde et korrekt spenntre (fri for sykluser), samt reservelinker der det er mulig. {{Autoritetsdata}} [[Kategori:Datastrukturer]] [[Kategori:Grafalgoritmer]]
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Maler som brukes på denne siden:
Mal:Amboks
(
rediger
)
Mal:Autoritetsdata
(
rediger
)
Mal:Kildeløs
(
rediger
)
Mal:Kildeløs/Fiks det!.css
(
rediger
)
Modul:Arguments
(
rediger
)
Modul:External links
(
rediger
)
Modul:External links/conf
(
rediger
)
Modul:External links/conf/Autoritetsdata
(
rediger
)
Modul:Genitiv
(
rediger
)
Modul:Kildeløs
(
rediger
)
Modul:Message box
(
rediger
)
Modul:Message box/ambox.css
(
rediger
)
Modul:Message box/configuration
(
rediger
)
Modul:Yesno
(
rediger
)
Denne siden er medlem av 2 skjulte kategorier:
Kategori:Artikler uten kilder
Kategori:Artikler uten kilder, mangler Wikidata
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon