Redigerer
Gradientforsterkning
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
'''Gradientforsterkning''' (engelsk: ''gradient boosting'') er en [[Maskinlæring|maskinlæringsteknikk]] basert på [[forsterkning]] i et funksjonelt [[Rom (matematikk)|rom]], hvor målet er ''pseudo-residualene'' i stedet for de typiske [[Feil og residualer|residualene]] som brukes i tradisjonell forsterkning. Det gir en prediksjonsmodell i form av et [[Ensemblelæring|ensemble]] av svake prediksjonsmodeller, altså modeller som gjør svært få antagelser om dataene, og som typisk er enkle [[Beslutnignstrelæring|beslutningstrær]].<ref name="hastie">{{Kilde bok|tittel=The Elements of Statistical Learning|etternavn=Hastie|fornavn=T.|etternavn2=Tibshirani|fornavn2=R.|etternavn3=Friedman|fornavn3=J. H.|utgiver=Springer|isbn=978-0-387-84857-0|utgave=2nd|utgivelsessted=New York|kapittel=10. Boosting and Additive Trees|kapittel-url=http://www-stat.stanford.edu/~tibs/ElemStatLearn/|arkivurl=https://web.archive.org/web/20091110212529/http://www-stat.stanford.edu/~tibs/ElemStatLearn/|arkivdato=2009-11-10}}</ref><ref name="Friedman1999b">{{Kilde www|url=https://statweb.stanford.edu/~jhf/ftp/stobst.pdf|tittel=Stochastic Gradient Boosting|fornavn=J. H.|etternavn=Friedman|besøksdato=2024-05-17|arkiv-dato=2014-08-01|arkiv-url=https://web.archive.org/web/20140801033113/http://statweb.stanford.edu/~jhf/ftp/stobst.pdf|url-status=yes}}</ref> Når et beslutningstre er den svake lærende kalles den resulterende algoritmen ''gradientforsterkede trær'', og utkonkurrerer vanligvis en [[tilfeldig skog]].<ref name="hastie" /> En gradient-forsterket tremodell er bygget på en trinnvis måte i likhet med andre forsterknings-metoder, men den generaliserer de andre metodene ved å tillate optimering av en vilkårlig [[Deriverbar funksjon|deriverbar]] [[tapsfunksjon]]. == Regularisering == Å tilpasse treningssettet for tett kan føre til forringelse av modellens generaliseringsevne. Flere såkalte [[Regularisering|regulariseringsteknikker]] reduserer denne [[Overtilpasning|overtilpasningseffekten]] ved å begrense tilpasningsprosedyren. En naturlig regulariseringsparameter er antall gradientforsterkende iterasjoner ''M'' (altså antall trær i modellen når basislæreren er et beslutningstre). Å øke ''M'' reduserer feilen på treningssettet, men å sette det for høyt kan føre til overtilpasning. En optimal verdi av ''M'' velges ofte ved å se på prediksjonsfeilen til et separat valideringsdatasett. I tillegg til å kontrollere ''M'' brukes flere andre regulariseringsteknikker. En annen regulariseringsparameter er trærnes dybde. Jo høyere denne verdien er, desto mer sannsynlig vil modellen overtilpasse treningsdataene. == Bruk == Gradientforsterkning kan brukes i feltet for [[Maskinlært rangering|lære å rangere]]. Søkemotorene [[Yahoo!|Yahoo]]<ref>Cossock, David and Zhang, Tong (2008). [http://www.stat.rutgers.edu/~tzhang/papers/it08-ranking.pdf Statistical Analysis of Bayes Optimal Subset Ranking] {{Webarchive|url=https://web.archive.org/web/20100807162855/http://www.stat.rutgers.edu/~tzhang/papers/it08-ranking.pdf|date=2010-08-07}}, page 14.</ref> og [[Yandex]]<ref name="snezhinsk">[http://webmaster.ya.ru/replies.xml?item_no=5707&ncrnd=5118 Yandex corporate blog entry about new ranking model "Snezhinsk"] {{Wayback|url=http://webmaster.ya.ru/replies.xml?item_no=5707&ncrnd=5118 |date=20120301165959 }} {{Webarchive|url=https://web.archive.org/web/20120301165959/http://webmaster.ya.ru/replies.xml?item_no=5707&ncrnd=5118|date=2012-03-01}} (in Russian)</ref> bruker varianter av gradientforsterkning i maskinlærte rangeringsmotorer. Gradientforsterkning brukes også til dataanalyse i høyenergifysikk. Ved [[Large Hadron Collider]] (LHC) har varianter av gradientforsterkende [[Dypt nevralt nettverk|dype nevrale nett]] (DNN) lykkes med å reprodusere resultatene av ikke-maskinlæringsmetoder for analyser på datasettet som ble brukt til å oppdage [[Higgs-boson|higgs-bosonet]].<ref>{{cite arXiv|eprint=2001.06033|last1=Lalchand|first1=Vidhi|title=Extracting more from boosted decision trees: A high energy physics case study|year=2020|class=stat.ML}}</ref> Gradientforsterkede beslutningstre har også blitt brukt i geologiske studier, for eksempel for kvalitetsevaluering av sandsteinsreservoar.<ref>{{Cite journal|date=1. januar 2022}}</ref> == Ulemper == Selv om forsterkning kan øke nøyaktigheten til en basislærende, for eksempel et beslutningstre eller [[lineær regresjon]], ofrer det forståelighet og [[tolkbarhet]].<ref name=":1">{{Cite journal|last=Piryonesi|first=S. Madeh|date=2020-03-01|title=Data Analytics in Asset Management: Cost-Effective Prediction of the Pavement Condition Index|url=https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29IS.1943-555X.0000512}}</ref><ref>{{Cite journal|last=Wu|first=Xindong|date=2008-01-01|title=Top 10 algorithms in data mining}}</ref> For eksempel er det [[Trivialitet (matematikk)|trivielt]] og selvforklart å følge stien som et beslutningstre tar for sin beslutning, men det er mye vanskeligere å følge stiene til hundre eller tusenvis av trær. For å oppnå både ytelse og tolkbarhet fins det noen modellkomprimerings-teknikker som kan transformere en [[XGBoost]] til et enkelt "født-på-nytt"-beslutningstre som [[Approksimasjon|tilnærmer]] samme beslutningsfunksjon.<ref>{{Cite journal|last=Sagi|first=Omer|title=Approximating XGBoost with an interpretable decision tree.|date=2021}}</ref> Videre kan implementeringen være vanskeligere på grunn av at det krever mer beregning. == Se også == * [[Tilfeldig skog]] * [[XGBoost]] * [[Beslutnignstrelæring|Beslutningstrelæring]] == Referanser == <references /> [[Kategori:Maskinlæring]] [[Kategori:Klassifisering]] [[Kategori:Algoritmer]]
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Maler som brukes på denne siden:
Mal:Citation/core
(
rediger
)
Mal:Citation/make link
(
rediger
)
Mal:Cite arXiv
(
rediger
)
Mal:Cite journal
(
rediger
)
Mal:Gjem ved utskrift
(
rediger
)
Mal:Hide in print
(
rediger
)
Mal:ISOtilNorskdato
(
rediger
)
Mal:Kilde artikkel
(
rediger
)
Mal:Kilde bok
(
rediger
)
Mal:Kilde www
(
rediger
)
Mal:Kun ved utskrift
(
rediger
)
Mal:Only in print
(
rediger
)
Mal:Wayback
(
rediger
)
Mal:Webarchive
(
rediger
)
Modul:Citation/CS1
(
rediger
)
Modul:Citation/CS1/COinS
(
rediger
)
Modul:Citation/CS1/Configuration
(
rediger
)
Modul:Citation/CS1/Date validation
(
rediger
)
Modul:Citation/CS1/Identifiers
(
rediger
)
Modul:Citation/CS1/Utilities
(
rediger
)
Modul:Citation/CS1/Whitelist
(
rediger
)
Modul:ISOtilNorskdato
(
rediger
)
Modul:Wayback
(
rediger
)
Modul:Webarchive
(
rediger
)
Denne siden er medlem av 1 skjult kategori:
Kategori:Sider med kildemaler som mangler tittel
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon