Redigerer
Eksakte trigonometriske konstanter
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
[[Fil:Polygontriangle.gif|thumb|right|I en regulær ''n''-kant er ''a = π/n'' den halve [[regulær mangekant|sentralvinkel]] og ''b = π(1/2 - 1/n)'' den halve, [[regulær mangekant|indre vinkel]].]] {{Trigonometri}} '''Eksakte trigonometriske konstanter''' er eksakte verdier som brukes for å uttrykke vinkler nøyaktig. Alle konstantene er utledet fra forholdet mellom to sider i en [[trekant]]. Alle eksakte verdier av sinus, cosinus og tangens til vinkler med 3-graders inkrementer er det mulig å utlede ved å bruke [[trigonometriske identiteter|identitetene]] for halve vinkler, dobbelte vinkler og sum/differanse med verdiene for 0°, 30°, 36°, og 45°. Det tilsvarer at de er [[konstruerbare tall]] og basert på [[konstruksjon (geometri)|konstruksjon]] av [[regulær mangekant|regulære mangekanter]]. Disse spesielle vinklene som er listet, er de halve sentralvinklene i de tilsvarende mangekantene. Det er kun mulig å finne eksakte verdier for vinkler på formen {{sfrac|m {{pi}}|n}} (gitt i [[radian]]er), der m og n er [[heltall]] slik at det går an å [[konstruerbare polygoner|konstruere et polygon]]er med n eller m sider. Konstantene oppgis på eksakt form, dvs. ved hjelp av [[N-te-rot|røtter]] og [[brøk]]er, uten [[avrunding]] til [[desimaltall]], som kan lede til unøyaktigheter dersom man bruker de i videre beregninger. Mange av verdiene er [[irrasjonelt tall|irrasjonelle]]. Dersom man evaulerer funksjonene <math>\sin x</math> og <math>\cos x</math> med et rasjonalt [[argument (matematikk)|argumenter]], er de eneste mulige rasjonale løsningene 0, ±1 og ±{{sfrac|1|2}}. == Velkjente konstanter == [[File:Unit circle angles color.svg|250px|thumb|Eksakte verdier på formen <math>(\cos \theta, \sin \theta)</math> på [[enhetssirkel]]en; alle disse er et multiplum av 30° og 45° ({{sfrac|{{pi}}|6}} og {{sfrac|{{pi}}|4}}).]] Følgende konstanter kan utledes for verdier ut fra en sekstendeling av [[enhetssirkel]]en; disse gjelder for verdiene man får av å dele en sirkel i åtte eller tolv like deler. Én hel omdreining er gitt ved 360° eller <math>2 \pi</math>. {| class="wikitable" style="text-align:center" |- ! Dreining ! [[grad (vinkel)|Grader]] ! [[Radian]]er ! [[Sinussetningen|Sinus]] ! [[Cosinus]] ! [[Tangens]] |- | 0 | 0° | 0 | 0 | 1 | 0 |- |- | {{sfrac|1|12}} | 30° | {{sfrac|{{pi}}|6}} | {{sfrac|1|2}} | {{sfrac|{{sqrt|3}}|2}} | {{sfrac|{{sqrt|3}}|3}} |- | {{sfrac|1|8}} | 45° | {{sfrac|{{pi}}|4}} | {{sfrac|{{sqrt|2}}|2}} | {{sfrac|{{sqrt|2}}|2}} | 1 |- | {{sfrac|1|6}} | 60° | {{sfrac|{{pi}}|3}} | {{sfrac|{{sqrt|3}}|2}} | {{sfrac|1|2}} | {{sqrt|3}} |- | {{sfrac|1|4}} | 90° | {{sfrac|{{pi}}|2}} | 1 | 0 | |- | {{sfrac|1|3}} | 120° | {{sfrac|2{{pi}}|3}} | {{sfrac|{{sqrt|3}}|2}} | −{{sfrac|1|2}} | −{{sqrt|3}} |- | {{sfrac|3|8}} | 135° | {{sfrac|3{{pi}}|4}} | {{sfrac|{{sqrt|2}}|2}} | −{{sfrac|{{sqrt|2}}|2}} | −1 |- | {{sfrac|5|12}} | 150° | {{sfrac|5{{pi}}|6}} | {{sfrac|1|2}} | −{{sfrac|{{sqrt|3}}|2}} | −{{sfrac|{{sqrt|3}}|3}} |- | {{sfrac|1|2}} | 180° | {{pi}} | 0 | −1 | 0 |- | {{sfrac|7|12}} | 210° | {{sfrac|7{{pi}}|6}} | −{{sfrac|1|2}} | −{{sfrac|{{sqrt|3}}|2}} | {{sfrac|{{sqrt|3}}|3}} |- | {{sfrac|5|8}} | 225° | {{sfrac|5{{pi}}|4}} | −{{sfrac|{{sqrt|2}}|2}} | −{{sfrac|{{sqrt|2}}|2}} | 1 |- | {{sfrac|2|3}} | 240° | {{sfrac|4{{pi}}|3}} | −{{sfrac|{{sqrt|3}}|2}} | −{{sfrac|1|2}} | {{sqrt|3}} |- | {{sfrac|3|4}} | 270° | {{sfrac|3{{pi}}|2}} | −1 | 0 | |- | {{sfrac|5|6}} | 300° | {{sfrac|5{{pi}}|3}} | −{{sfrac|{{sqrt|3}}|2}} | {{sfrac|1|2}} | −{{sqrt|3}} |- | {{sfrac|7|8}} | 315° | {{sfrac|7{{pi}}|4}} | −{{sfrac|{{sqrt|2}}|2}} | {{sfrac|{{sqrt|2}}|2}} | −1 |- | {{sfrac|11|12}} | 330° | {{sfrac|11{{pi}}|6}} | −{{sfrac|1|2}} | {{sfrac|{{sqrt|3}}|2}} | −{{sfrac|{{sqrt|3}}|3}} |- | 1 | 360° | 2{{pi}} | 0 | 1 | 0 |} == Andre verdier == Verdier for vinkler utenfor området [0°, 45°] kan utledes fra disse verdiene ved bruk av formlene for [[Trigonometriske identiteter#Symmetri, forskyvninger og periodisitet|symmetri i trigonometriske identiteter]]. Merk at 1° = π/180 [[radian]]er. === 0°: fundamental === : <math>\sin 0=0\,</math> : <math>\cos 0=1\,</math> : <math>\tan 0=0\,</math> : <math>\cot 0\mbox{ er undefinert}\,</math> === 3°: 60-sidet polygon === : <math>\sin\frac{\pi}{60}=\sin 3^\circ=\tfrac{1}{16} \left[2(1-\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3+1)\right]\,</math> : <math>\cos\frac{\pi}{60}=\cos 3^\circ=\tfrac{1}{16} \left[2(1+\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3-1)\right]\,</math> : <math>\tan\frac{\pi}{60}=\tan 3^\circ=\tfrac{1}{4} \left[(2-\sqrt3)(3+\sqrt5)-2\right]\left[2-\sqrt{2(5-\sqrt5)}\right]\,</math> : <math>\cot\frac{\pi}{60}=\cot 3^\circ=\tfrac{1}{4} \left[(2+\sqrt3)(3+\sqrt5)-2\right]\left[2+\sqrt{2(5-\sqrt5)}\right]\,</math> === 6°: 30-sidet polygon === : <math>\sin\frac{\pi}{30}=\sin 6^\circ=\tfrac{1}{8} \left[\sqrt{6(5-\sqrt5)}-\sqrt5-1\right]\,</math> : <math>\cos\frac{\pi}{30}=\cos 6^\circ=\tfrac{1}{8} \left[\sqrt{2(5-\sqrt5)}+\sqrt3(\sqrt5+1)\right]\,</math> : <math>\tan\frac{\pi}{30}=\tan 6^\circ=\tfrac{1}{2} \left[\sqrt{2(5-\sqrt5)}-\sqrt3(\sqrt5-1)\right]\,</math> : <math>\cot\frac{\pi}{30}=\cot 6^\circ=\tfrac{1}{2} \left[\sqrt3(3+\sqrt5)+\sqrt{2(25+11\sqrt5)}\right]\,</math> === 9°: 20-sidet polygon === : <math>\sin\frac{\pi}{20}=\sin 9^\circ=\tfrac{1}{8} \left[\sqrt2(\sqrt5+1)-2\sqrt{5-\sqrt5}\right]\,</math> : <math>\cos\frac{\pi}{20}=\cos 9^\circ=\tfrac{1}{8} \left[\sqrt2(\sqrt5+1)+2\sqrt{5-\sqrt5}\right]\,</math> : <math>\tan\frac{\pi}{20}=\tan 9^\circ=\sqrt5+1-\sqrt{5+2\sqrt5}\,</math> : <math>\cot\frac{\pi}{20}=\cot 9^\circ=\sqrt5+1+\sqrt{5+2\sqrt5}\,</math> === 12°: 15-sidet polygon === : <math>\sin\frac{\pi}{15}=\sin 12^\circ=\tfrac{1}{8} \left[\sqrt{2(5+\sqrt5)}-\sqrt3(\sqrt5-1)\right]\,</math> : <math>\cos\frac{\pi}{15}=\cos 12^\circ=\tfrac{1}{8} \left[\sqrt{6(5+\sqrt5)}+\sqrt5-1\right]\,</math> : <math>\tan\frac{\pi}{15}=\tan 12^\circ=\tfrac{1}{2} \left[\sqrt3(3-\sqrt5)-\sqrt{2(25-11\sqrt5)}\right]\,</math> : <math>\cot\frac{\pi}{15}=\cot 12^\circ=\tfrac{1}{2} \left[\sqrt3(\sqrt5+1)+\sqrt{2(5+\sqrt5)}\right]\,</math> === 15°: dodekagon === : <math>\sin\frac{\pi}{12}=\sin 15^\circ=\tfrac{1}{4}\sqrt2(\sqrt3-1)\,</math> : <math>\cos\frac{\pi}{12}=\cos 15^\circ=\tfrac{1}{4}\sqrt2(\sqrt3+1)\,</math> : <math>\tan\frac{\pi}{12}=\tan 15^\circ=2-\sqrt3\,</math> : <math>\cot\frac{\pi}{12}=\cot 15^\circ=2+\sqrt3\,</math> === 18°: dekagon === : <math>\sin\frac{\pi}{10}=\sin 18^\circ=\tfrac{1}{4}\left(\sqrt5-1\right)=\tfrac{1}{2}\varphi^{-1}\,</math> : <math>\cos\frac{\pi}{10}=\cos 18^\circ=\tfrac{1}{4}\sqrt{2(5+\sqrt5)}\,</math> : <math>\tan\frac{\pi}{10}=\tan 18^\circ=\tfrac{1}{5}\sqrt{5(5-2\sqrt5)}\,</math> : <math>\cot\frac{\pi}{10}=\cot 18^\circ=\sqrt{5+2\sqrt 5}\,</math> === 21°: summen 9° + 12° === : <math>\sin\frac{7\pi}{60}=\sin 21^\circ=\tfrac{1}{16}\left[2(\sqrt3+1)\sqrt{5-\sqrt5}-\sqrt2(\sqrt3-1)(1+\sqrt5)\right]\,</math> : <math>\cos\frac{7\pi}{60}=\cos 21^\circ=\tfrac{1}{16}\left[2(\sqrt3-1)\sqrt{5-\sqrt5}+\sqrt2(\sqrt3+1)(1+\sqrt5)\right]\,</math> : <math>\tan\frac{7\pi}{60}=\tan 21^\circ=\tfrac{1}{4}\left[2-(2+\sqrt3)(3-\sqrt5)\right]\left[2-\sqrt{2(5+\sqrt5)}\right]\,</math> : <math>\cot\frac{7\pi}{60}=\cot 21^\circ=\tfrac{1}{4}\left[2-(2-\sqrt3)(3-\sqrt5)\right]\left[2+\sqrt{2(5+\sqrt5)}\right]\,</math> === 22.5°: oktogon === : <math>\sin\frac{\pi}{8}=\sin 22.5^\circ=\tfrac{1}{2}(\sqrt{2-\sqrt{2}}),</math> : <math>\cos\frac{\pi}{8}=\cos 22.5^\circ=\tfrac{1}{2}(\sqrt{2+\sqrt{2}})\,</math> : <math>\tan\frac{\pi}{8}=\tan 22.5^\circ=\sqrt{2}-1\,</math> : <math>\cot\frac{\pi}{8}=\cot 22.5^\circ=\sqrt{2}+1\,</math> === 24°: summen 12° + 12° === : <math>\sin\frac{2\pi}{15}=\sin 24^\circ=\tfrac{1}{8}\left[\sqrt3(\sqrt5+1)-\sqrt2\sqrt{5-\sqrt5}\right]\,</math> : <math>\cos\frac{2\pi}{15}=\cos 24^\circ=\tfrac{1}{8}\left(\sqrt6\sqrt{5-\sqrt5}+\sqrt5+1\right)\,</math> : <math>\tan\frac{2\pi}{15}=\tan 24^\circ=\tfrac{1}{2}\left[\sqrt{2(25+11\sqrt5)}-\sqrt3(3+\sqrt5)\right]\,</math> : <math>\cot\frac{2\pi}{15}=\cot 24^\circ=\tfrac{1}{2}\left[\sqrt2\sqrt{5-\sqrt5}+\sqrt3(\sqrt5-1)\right]\,</math> === 27°: summen 12° + 15° === : <math>\sin\frac{3\pi}{20}=\sin 27^\circ=\tfrac{1}{8}\left[2\sqrt{5+\sqrt5}-\sqrt2\;(\sqrt5-1)\right]\,</math> : <math>\cos\frac{3\pi}{20}=\cos 27^\circ=\tfrac{1}{8}\left[2\sqrt{5+\sqrt5}+\sqrt2\;(\sqrt5-1)\right]\,</math> : <math>\tan\frac{3\pi}{20}=\tan 27^\circ=\sqrt5-1-\sqrt{5-2\sqrt5}\,</math> : <math>\cot\frac{3\pi}{20}=\cot 27^\circ=\sqrt5-1+\sqrt{5-2\sqrt5}\,</math> === 30°: heksagon === : <math>\sin\frac{\pi}{6}=\sin 30^\circ=\tfrac{1}{2}\,</math> : <math>\cos\frac{\pi}{6}=\cos 30^\circ=\tfrac{1}{2}\sqrt3\,</math> : <math>\tan\frac{\pi}{6}=\tan 30^\circ=\tfrac{1}{3}\sqrt3\,</math> : <math>\cot\frac{\pi}{6}=\cot 30^\circ=\sqrt3\,</math> === 33°: summen 15° + 18° === : <math>\sin\frac{11\pi}{60}=\sin 33^\circ=\tfrac{1}{16}\left[2(\sqrt3-1)\sqrt{5+\sqrt5}+\sqrt2(1+\sqrt3)(\sqrt5-1)\right]\,</math> : <math>\cos\frac{11\pi}{60}=\cos 33^\circ=\tfrac{1}{16}\left[2(\sqrt3+1)\sqrt{5+\sqrt5}+\sqrt2(1-\sqrt3)(\sqrt5-1)\right]\,</math> : <math>\tan\frac{11\pi}{60}=\tan 33^\circ=\tfrac{1}{4}\left[2-(2-\sqrt3)(3+\sqrt5)\right]\left[2+\sqrt{2(5-\sqrt5)}\right]\,</math> : <math>\cot\frac{11\pi}{60}=\cot 33^\circ=\tfrac{1}{4}\left[2-(2+\sqrt3)(3+\sqrt5)\right]\left[2-\sqrt{2(5-\sqrt5)}\right]\,</math> === 36°: pentagon ===<!-- This section is linked from [[Pentagram]] --> : <math>\sin\frac{\pi}{5}=\sin 36^\circ=\tfrac14[\sqrt{2(5-\sqrt5)}]\,</math> : <math>\cos\frac{\pi}{5}=\cos 36^\circ=\frac{1+\sqrt5}{4}=\tfrac{1}{2}\varphi\,</math> : <math>\tan\frac{\pi}{5}=\tan 36^\circ=\sqrt{5-2\sqrt5}\,</math> : <math>\cot\frac{\pi}{5}=\cot 36^\circ=\tfrac15[\sqrt{5(5+2\sqrt5)}]\,</math> === 39°: summen 18° + 21° === : <math>\sin\frac{13\pi}{60}=\sin 39^\circ=\tfrac1{16}[2(1-\sqrt3)\sqrt{5-\sqrt5}+\sqrt2(\sqrt3+1)(\sqrt5+1)]\,</math> : <math>\cos\frac{13\pi}{60}=\cos 39^\circ=\tfrac1{16}[2(1+\sqrt3)\sqrt{5-\sqrt5}+\sqrt2(\sqrt3-1)(\sqrt5+1)]\,</math> : <math>\tan\frac{13\pi}{60}=\tan 39^\circ=\tfrac14\left[(2-\sqrt3)(3-\sqrt5)-2\right]\left[2-\sqrt{2(5+\sqrt5)}\right]\,</math> : <math>\cot\frac{13\pi}{60}=\cot 39^\circ=\tfrac14\left[(2+\sqrt3)(3-\sqrt5)-2\right]\left[2+\sqrt{2(5+\sqrt5)}\right]\,</math> === 42°: summen 21° + 21° === : <math>\sin\frac{7\pi}{30}=\sin 42^\circ=\frac{\sqrt6\sqrt{5+\sqrt5}-\sqrt5+1}{8}\,</math> : <math>\cos\frac{7\pi}{30}=\cos 42^\circ=\frac{\sqrt2\sqrt{5+\sqrt5}+\sqrt3(\sqrt5-1)}{8}\,</math> : <math>\tan\frac{7\pi}{30}=\tan 42^\circ=\frac{\sqrt3(\sqrt5+1)-\sqrt2\sqrt{5+\sqrt5}}{2}\,</math> : <math>\cot\frac{7\pi}{30}=\cot 42^\circ=\frac{\sqrt{2(25-11\sqrt5)}+\sqrt3(3-\sqrt5)}{2}\,</math> === 45°: kvadrat === : <math>\sin\frac{\pi}{4}=\sin 45^\circ=\frac{\sqrt2}{2}=\frac{1}{\sqrt2}\,</math> : <math>\cos\frac{\pi}{4}=\cos 45^\circ=\frac{\sqrt2}{2}=\frac{1}{\sqrt2}\,</math> : <math>\tan\frac{\pi}{4}=\tan 45^\circ=1\,</math> : <math>\cot\frac{\pi}{4}=\cot 45^\circ=1\,</math> === 60°: trekant === : <math>\sin\frac{\pi}{3}=\sin 60^\circ=\tfrac{1}{2}\sqrt3\,</math> : <math>\cos\frac{\pi}{3}=\cos 60^\circ=\tfrac{1}{2}\,</math> : <math>\tan\frac{\pi}{3}=\tan 60^\circ=\sqrt3\,</math> : <math>\cot\frac{\pi}{3}=\cot 60^\circ=\tfrac{1}{3}\sqrt3\,</math> der <math> \varphi </math> er [[det gylne snitt]]. == Se også == * [[Trigonometriske funksjoner]] * [[Liste over trigonometriske identiteter]] == Litteratur == * {{MathWorld|title=Constructible polygon|urlname=ConstructiblePolygon}} * {{MathWorld|title=Trigonometry angles|urlname=TrigonometryAngles}} ** [http://mathworld.wolfram.com/TrigonometryAnglesPi3.html π/3 (60°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi6.html π/6 (30°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi12.html π/12 (15°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi24.html π/24 (7.5°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi4.html π/4 (45°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi8.html π/8 (22.5°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi16.html π/16 (11.25°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi32.html π/32 (5.625°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi5.html π/5 (36°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi10.html π/10 (18°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi20.html π/20 (9°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi7.html π/7] — ''π/14'' ** [http://mathworld.wolfram.com/TrigonometryAnglesPi9.html π/9 (20°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi18.html π/18 (10°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi11.html π/11] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi13.html π/13] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi15.html π/15 (12°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi30.html π/30 (6°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi17.html π/17] ** ''π/19'' ** [http://mathworld.wolfram.com/TrigonometryAnglesPi23.html π/23] * {{MathWorld|title=Niven's Theorem|urlname=NivensTheorem}} * {{Kilde artikkel | forfatter= Bracken, Paul; Cizek, Jiri | tittel= Evaluation of quantum mechanical perturbation sums in terms of quadratic surds and their use in approximation of zeta(3)/pi^3 | publikasjon= Int. J. Quantum Chemistry | utgivelsesår=2002 | bind=90 | utgave=1 | side=42–53 | doi=10.1002/qua.1803 }} * {{Kilde artikkel | forfatter= Conway, John H.; Radin, Charles; Radun, Lorenzo | tittel= On angles whose squared trigonometric functions are rational | publikasjon= | utgivelsesår=1998 | url=http://arxiv.org/abs/math-ph/9812019 | kommentar=[arXiv] }} * {{Kilde artikkel | forfatter= Conway, John H.; Radin, Charles; Radun Lorenzo | tittel= On angles whose squared trigonometric functions are rational | publikasjon= Disc. Comput. Geom. | språk= | utgivelsesår=1999 | bind=22 | utgave=3 | side=321–332 | doi=10.1007/PL00009463 }} {{MR|1706614}} * {{Kilde artikkel | forfatter=Girstmair, Kurt | tittel= Some linear relations between values of trigonometric functions at k*pi/n | publikasjon= Acta Arithmetica | utgivelsesår=1997 | bind=81 | side=387–398 }} {{MR|1472818}} * {{Kilde artikkel | forfatter=Gurak, S. | tittel= On the minimal polynomial of gauss periods for prime powers | publikasjon= Mathematics of Computation | utgivelsesår=2006 | bind=75 | utgave=256 | side=2021–2035 | doi=10.1090/S0025-5718-06-01885-0 | bibcode=2006MaCom..75.2021G }} {{MR|2240647}} * {{Kilde artikkel | forfatter=Servi, L. D. | tittel= Nested square roots of 2 | publikasjon= Am. Math. Monthly | utgivelsesår=2003 | bind=110 | utgave=4 | side=326–330 | doi=10.2307/3647881 }} {{MR|1984573}} {{JSTOR|3647881}} == Eksterne lenker == * [http://mathforum.org/dr.math/faq/formulas/faq.regpoly.html Constructible Regular Polygons] * [http://mathforum.org/dr.math/faq/faq.polygon.names.html Naming polygons] * [https://oeis.org/search?q=Decimal+expansion+of+sine+of+%25+degree&sort=&go=S%C3%B8k Decimal expansion of sine of * degrees, OEIS] {{Autoritetsdata}} [[Kategori:Trigonometri]] [[Kategori:Matematiske konstanter]]
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Maler som brukes på denne siden:
Mal:Autoritetsdata
(
rediger
)
Mal:Gjem ved utskrift
(
rediger
)
Mal:Hide in print
(
rediger
)
Mal:Hlist/styles.css
(
rediger
)
Mal:ISOtilNorskdato
(
rediger
)
Mal:JSTOR
(
rediger
)
Mal:Kilde artikkel
(
rediger
)
Mal:Kun ved utskrift
(
rediger
)
Mal:MR
(
rediger
)
Mal:MathSciNet
(
rediger
)
Mal:MathWorld
(
rediger
)
Mal:Navbar
(
rediger
)
Mal:Only in print
(
rediger
)
Mal:Pi
(
rediger
)
Mal:Sfrac
(
rediger
)
Mal:Sfrac/styles.css
(
rediger
)
Mal:Språkikon
(
rediger
)
Mal:Sqrt
(
rediger
)
Mal:Trigonometri
(
rediger
)
Modul:Arguments
(
rediger
)
Modul:Citation/CS1
(
rediger
)
Modul:Citation/CS1/COinS
(
rediger
)
Modul:Citation/CS1/Configuration
(
rediger
)
Modul:Citation/CS1/Date validation
(
rediger
)
Modul:Citation/CS1/Identifiers
(
rediger
)
Modul:Citation/CS1/Utilities
(
rediger
)
Modul:Citation/CS1/Whitelist
(
rediger
)
Modul:External links
(
rediger
)
Modul:External links/conf
(
rediger
)
Modul:External links/conf/Autoritetsdata
(
rediger
)
Modul:Genitiv
(
rediger
)
Modul:ISOtilNorskdato
(
rediger
)
Modul:Navbar
(
rediger
)
Modul:Navbar/configuration
(
rediger
)
Modul:Navbar/styles.css
(
rediger
)
Modul:Unsubst
(
rediger
)
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon