Redigerer
Elektromagnetisk induksjon
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
===Gjensidig induksjon eller gjensidig induktans=== [[Fil: Faraday emf experiment.svg|thumb|Diagram som viser Faradays jernring for induksjon. Endring av den magnetiske fluks i den venstre spolen induserer en spenning i den høyre spiralen.]] [[Image:Mutually inducting inductors.PNG|thumb|right|Skisse som viser to gjensidig koblede magnetiske kretser. De to parallelle linjene mellom spolene forteller at det er en jernkjerne mellom dem.]] Bildet til venstre viser et klassisk forsøk som demonstrerer gjensidig induksjon. Her er det laget to viklinger rundt en jernring, der viklingen til venstre er tilknyttet et batteri, mens den til høyre er tilknyttet et voltmeter. Når bryteren i tilknytning til batteriet kobles inn oppstår det et magnetfelt i den venstre viklingen, dette magnetfelt setter opp en magnetisk fluks som (helt eller delvis) også går gjennom spolen til høyre. Denne blir utsatt for et hurtig økende magnetfelt som etter Faradays lov vil føre til en indusert spenning (EMS) i denne. Dette vil måles som et utslag på voltmetret. Imidlertid vil ikke batteriet gi annet enn en kontinuerlig strøm, dermed vil magnetfeltet i ringen etter kort tid være konstant, og spenningen i spolen til høyre blir etter kort tid null. Derimot vil det igjen induseres spenning når bryteren åpnes, men denne gangen vil spenningen ha motsatt retning i henhold til Lenz' lov. Den induserte spenningen vil være proporsjonal med antall vindinger i de to spolene, strømmen og magnetisk fluks som går gjennom hver av spolene. Diagrammet til venstre viser vanlig symbolbruk for en magnetisk koblet krets. Størrelser relatert til den venstre spolen gis tallet 1. Tallet 2 brukes for størrelser for den høyre spolen. Magnetisk fluks forårsaket av spolen 1 som påvirker spole 2 kalles Φ<sub>B2</sub>. Den gjensidige koblingen mellom de to spolene virker begge veger, slik at en magnetisk fluks fra spolen 2 kan påvirke spolene 1. Denne fluksen kalles Φ<sub>B1</sub>. På samme måte som med selvinduksjon kaller en dette for gjensidig induktans, men betegner denne M. Formelen som definerer gjensidig induktans blir lik den i avsnittet over for selvinduktansselvinduktans: :<math>M = N_2 {\Phi_{B2} \over i_1} = N_1 {\Phi_{B1} \over i_2}</math> Videre vil den induserte elektromotoriske spenningen i hver av viklingene være gitt av: :<math> \mathcal E_2 = - M{di_1 \over dt} \text{ og } \mathcal E_1 = - M{di_2 \over dt}</math> Minustegnene viser til Lenz' lov. Ligningene forteller at en endring av strømstyrken i spole 1 forårsaker en endring av fluks i spole 2 som induserer en EMS som motvirker denne fluksendringen. Motsatt forhold for en strømendring i spole 2. Som nevnt vil det induseres en spenning i de magnetisk koblede spolene om det inntreffer en endring av magnetisk fluks. Dette kan en oppnå ved en inn eller utkobling av likespenning som forklart over, eller at spenningskilden gir vekselstrøm. En innretning som utnytter dette prinsippet er en transformator. Transformatoren har til hensikt å overføre energi mellom elektriske kretser med forskjellig spenning, men andre formål finnes også. I prinsippet er den likt utført som det som er forklart over. Gjensidig induktans har også ulemper, ved at elektriske kretser og apparatet påvirker hverandre. Dette kan gi forstyrrelser eller ødeleggelse, lynnedslag er et eksempel der induserte spenninger kan føre til ødeleggelser selv om ikke lynet treffer elektriske installasjoner direkte. Et annet eksempel er to parallelle kraftlinjer, der den ene kobles ut for vedlikehold. En skulle da tro at den utkoblede kraftlinjen var spenningsløs og ufarlig, men er linjene lange kan farlige spenninger bli indusert i den . Personalet som skal utføre arbeidet må derfor ha rutiner for å unngå elektrisk sjokk. Et tredje eksempel er mer høyfrekvent påvirkning mellom kraftsystemer, telefonsystemer, mobiltelefoni, samt praktisk talt alle slags elektroniske og elektriske systemer. Det er derfor krav til at apparater og systemer skal ha emisjon av [[Elektromagnetisk forstyrrelse|elektromagnetisk støy]] innenfor visse grenser, samt at hver enkelt enhet skal ha immunitet mot ekstern påvirkning. En kaller slike krav for Elektromagnetisk kompatibilitet (EMC).
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon