Redigerer
Vannkraftverk
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
=== Turbin- og spenningsregulatoren === {{Main|Kraftverk#Drift av kraftverk}} ==== Turbinregulator ==== I et kraftsystem må det til enhver tid være eksakt like stor produksjon av effekt som forbruk av effekt, altså likevekt mellom effekt inn og ut av systemet. Det er turbinregulatoren på hvert enkelt aggregat som sørger for dette. Turbinregulatoren regulerer pådraget (vann inn på turbinen) for å gi tilnærmet konstant nettfrekvens ved varierende belastningsgrad. Ved økende elektrisk last vil aggregatet begynne å sakke, og regulatoren vil øke vannmengden. I et større kraftnett er alle generatorene regulert sammen slik at de utgjør ett samlet, stivt nett. Spenning og frekvens for hvert enkelt generator er da tilnærmet upåvirkelig. For å få alle aggregatene til å dele belastningen mellom seg er regulatorene innstilt for å gi et såkalt stasjonært avvik. Dermed virker den som en ''P-regulator'' (''proporsjonal-regulator'') etter at nytt stabilt arbeidspunkt er oppstått etter en ny lastendring. Det vil si at det skal være en bestemt sammenheng mellom frekvensen og effekten, slik at frekvensen er litt større når aggregatet går i tomgang enn ved full belastning. Dette vil igjen si at når belastningen i nettet er lite, for eksempel om kvelden og natten, vil frekvensen tendere mot å være høy. Motsatt vil frekvensen bli noe lavere ved stor belastning, for eksempel om morgenen med stort samtidig forbruk i husholdningene. Dermed vil enhver turbinregulator regulere opp pådraget og produksjonen når frekvensen/turtallet faller og dermed øke effektproduksjonen. Motsatt reguleres pådraget ned ved økende frekvens. På denne måten møtes forbrukernes behov automatisk. Ved at alle aggregater blir regulert på denne måten blir systemet stabilisert, altså at det alltid oppnås likevekt mellom forbruket og produksjonen etter en liten tid (sekunder). I det spesielle tilfellet at en synkrongenerator kobles til nettet uten turbinregulator, vil nettet sørge for at turtallet til aggregatet uansett holdes konstant. En generator uten regulator forsøker å dra nettet oppover i frekvens, derfor kan ikke dette tillates for annet enn små aggregater. Disse vil normalt ikke kunne påvirke frekvensen og forårsake ustabilitet, men problemer oppstår om det blir mange småkraftverk uten regulator. Statnett setter krav til at generatorer over 10 MW skal ha egen turbinregulator, mens aggregater mellom 1 og 10 MW kan ha en såkalt forenklet turbinregulator.<ref>{{Kilde www|url= http://www.statnett.no/Global/Dokumenter/Kraftsystemet/Systemansvar/FIKS%202012.pdf|tittel= Funksjonskrav i kraftsystemet 2012|besøksdato= 24. november 2014|forfatter= |utgivelsesdato= |utgiver= Statnett SF.|arkiv-url= https://web.archive.org/web/20141211060052/http://www.statnett.no/Global/Dokumenter/Kraftsystemet/Systemansvar/FIKS%202012.pdf|arkivdato= 2014-12-11|url-status = død}}</ref> ==== Transient respons og roterende masse ==== Om det i kraftsystemet skjer en lastreduksjon (forbrukerne reduserer sitt energiforbruk) vil ikke turbinenes regulatorer respondere momentant, dessuten kan ikke vannet i en tilførselstunnel som kanskje er flere kilometer lang kunne redusere hastighet momentant. Dette blir analogt med et stort godstog, det kan veie mange tusen tonn og selv om det har stor bremsekraft tar det lang tid å redusere hastigheten. Dermed vil en lastreduksjon føre til at hastigheten til aggregatene øker og frekvensen i nettet går opp. Dette fordi alle de tilknyttede generatorene har konstant moment gitt av turbinene, samtidig som effekten reduseres. De to formlene rett over viser sammenhengen matematisk. Motsatt vil en lastøkning føre til redusert omdreiningstall og frekvens. Dette fordi momentet i første omgang er konstant, effekten øker og turtallet må da gå ned. I aller første omgang er det aggregatenes samlede opplagrede kinetiske energi i de roterende masser ([[treghetsmoment]]) som tar opp eller leverer ut energi. Siden de roterende masser i turbinene og generatorene tilsammen i et stort kraftsystem veier mange hundretusen tonn vil en liten hastighetsendring kunne bety mye opptatt eller frigjort energi. Dette er med på å dempe ut virkningen av turbinens og vannvegens treghet. [[Fil:Hydraulic turbine response.jpg|mini|Kurver som viser en [[vannturbin]]s respons på en endring av pådraget som funksjon av tiden, fiolet kurve. Ved tiden 0 endres pådraget fra 1,0 til 0,9 (10 % reduksjon) i løpet av ett sekund. Den grønne kurven viser hvordan trykket i turbinen øker, noe som også får effekten til å øke som den røde kurven viser. Hastigheten til turbinen går derimot ned helt fra endringen skjer. I løpet av omtrent 2 sekunder er hele forløpet over.<ref>[[#PSSC|Prabha Kundur: ''Power systems stability'' side 386.]]</ref>]] I neste omgang responderer turbinregulatorene på lastendringen. En spesiell egenskap med et vannkraftverk er at responsen skjer motsatt av turbinregulatorens inngripen for endring av pådraget. Ved en lastøkning vil regulatoren til en francis- eller kaplanturbin sørge for at pådraget til turbinen økes ved at ledeskovlene vris slik at det blir større åpning. I første omgang vil ikke vannet i vannveien endre hastigheten som forklart over. Dette resulterer i lavere trykk og moment på løpehjulet. Turbinen får dermed redusert effektproduksjonen, altså det motsatte av hva kraftsystemet etterspurte. Etter noen få sekunder akselerer vannet i vannveien og ønsket produksjon oppnås. Motsatt respons skjer ved en lastreduksjon i nettet, turbinene responderer med økt effekt fordi ledeskovlene reduserer åpningen og trykket øker. Også denne endringen er de roterende masser i aggregatene med på å dempe ut.<ref>[[#PSSC|Prabha Kundur: ''Power systems stability'' side 385.]]</ref> I en peltonturbin skjer noe av den samme responsen på en lastendring. Som forklart i avsnittet om svingekammeret vil det bygges opp høyere vannstand i svingekammeret ved reduksjon av pådraget. Dette fører til økt fallhøyde og økt effekt avgitt fra turbinene. Det ble også forklart at det skjer et svingeforløp slik at nivået i svingkammeret en stund senere kommer lavere enn nivået i inntaksdammen, noe som igjen reduserer effekten fra aggregatet. Kortvarig vil turtallet og frekvensen til aggregatet øke og minke, alt etter regulerstyrken til turbinregulatoren påvirker pådraget i større eller mindre grad. Om denne oscillasjonen til vannet mellom svingkammeret og inntaksdammen har en frekvens som responderer dårlig med turbinregulatorens tidsrespons kan svingningen bli forsterket. En sier at systemet blir ustabilt, altså en systemegenskap som må undertrykkes. Systemer som oppfører seg på denne måten kalles for dynamiske systemer, og den transiente responsen på en forstyrrelse fører til et svingeforløp før regulatoren gir en ny likevekt. Regulatoren må ha spesielle egenskaper for å dempe ut svingningene slik at minimums- og maksimumsverdiene skal bli minst mulige og forløpet kortest mulig varighet. ==== Spenningsregulatoren ==== [[Fil:Old Instruments and voltage regulator in Hakavik Power Station.JPG|mini|Instrumenter i [[Hakavik kraftverk]]. Midt i tavlen sees to elektromekaniske spenningsregulatorer. Anlegget er fra 1922 og fortsatt i bruk.]] Spenningsregulatoren skal sørge for å holde spenningen på generatorens terminaler tilnærmet konstant. Ved en økning av produksjonen vil spenningen fra generatoren gå ned, dette må kompenseres med større magnetiseringsstrøm. Det motsatte skjer med redusert produksjon og magnetiseringsstrømmen må da reduseres. Spenningsregulatoren kan virke på samme måte som turbinregulatoren med fallende statikk. Dermed er også spenningen noe som reguleres mellom alle de sammenkoblede generatorene i kraftsystemet. Den kan også være innstilt for å gi konstant [[reaktiv effekt]] eller effektfaktor (cos fi). Spenningsregulatorer for generatorene er viktige komponenter i kraftsystemet fordi de opprettholder spenningen for alle nettnivåene helt ut til forbrukerne. Spenningsregulatorer kan også innstilles for å gi konstant spenning uavhengig av effektproduksjonen, for konstant effektfaktor eller en gitt konstant reaktiv effektproduksjon. Også for spenningen skjer det en transient respons ved en forstyrrelse. Spenningsregulatoren må ha egenskaper som demper ut forstyrrelser og oppretter ny likevekt i kraftsystemet.
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Denne siden er medlem av 5 skjulte kategorier:
Kategori:Anbefalte artikler
Kategori:Artikler med offisielle lenker og uten kobling til Wikidata
Kategori:Artikler uten offisielle lenker fra Wikidata
Kategori:CS1-vedlikehold: Uheldig URL
Kategori:Sider med kildemaler som mangler arkivdato
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon