Redigerer
Klassisk mekanikk
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
=== Newtons lover === Grunnlaget for den klassiske mekanikken ble lagt 5. juli 1687 med [[Isaac Newton]]s verk ''[[Philosophiae Naturalis Principia Mathematica]]'', ofte bare kalt ''Principia'', som her bygget videre [[Galileo Galilei]]s arbeider på 1600-tallet. I Principia formulerte Newton sine tre grunnleggende lover, som med moderne terminologi og språkbruk lyder: # Et legeme som ikke utsettes for ytre krefter forblir i ro eller i en rettlinjet bevegelse med konstant hastighet. # Akselerasjonen til et legeme er direkte proporsjonal med resultantkraften som virker på legemet, og omvendt proporsjonal med legemets masse. # Om to legemer påvirker hverandre, er kraften som virker fra det første legemet på den andre like stor og motsatt rettet til kraften som virker fra det andre legemet mot den første. Selv om den klassiske mekanikken har blitt ytterligere utviklet siden Newtons lover ble formulert utgjør disse grunnprinsippene fortsatt fundamentet for emnet. ==== Inertialramme, kraftbegrepet ==== Selv om Newtons første to lover er rimelig enkle har de ofte vært gjenstand for debatt, og noen fullstendig konsensus om tolkningen av dem kan ikke sies å foreligge. Ettersom begrep som ro og hastighet inngår i formuleringen av lovene, er det åpenbart at en form for referanseramme må finnes for at slike begreper skal være meningsfulle. En referanseramme der Newtons lover gjelder benevnes gjerne som en inertialramme (inertialsystem, treghetssystem). Ettersom krefter i klassisk mekanikk forutsettes å være objektive størrelser, det vil si uavhengig av referanseramme, kan en godtagbar referanseramme ikke akselerere. Det er derfor riktig å kreve at en inertialramme skal være fast, men ettersom det ikke finnes noe fast punkt i universet forblir likevel problemet uløst. Den eneste innvendningsfrie definisjonen er at en inertialramme er en referanseramme der Newtons første lov er gyldig. Dessverre er det praktisk talt umulig å gjennomføre eksperimenter på legemer uten kraftpåvirkning ettersom dette skulle forutsette at legemet befinner seg på behørig avstand fra all annen materie. Eksperimenter viser imidlertid at for de fleste praktiske tillempninger gir en jordfast referanseramme god overensstemmelse mellom teori og eksperiment. Riktignok kreves det i situasjoner der jordrotasjonen er av betydning, for eksempel satellittbevegelse, vind og havstrømmer, en referanseramme som ikke følger jorden i dens rotasjon. For studier av planeters bevegelse kreves en referanseramme som er fiksert i forhold til solen og så videre. Konklusjonen er at noen absolutt inertialramme som er universelt anvendbar ikke kan defineres, men at det for hver enkelt tillempning bør være mulig å finne en referanseramme der Newtons lover gjelder med tilstrekkelig god approksimasjon. Selv om Newton i ''Principia'' ikke utviklet sine tanker angående referanserammer, har det blitt hevdet at årsaken til at han delte opp sine to første lover var at han så den første som en måte å fastsette en gyldig referanseramme. Dersom dette ikke var tilfelle hadde den første loven bare vært et spesialtilfelle av den andre, en beskrivelse som iblant legges fram i elementære lærebøker. Om den første loven anvendes for å definere en gyldig referanseramme, kan den andre loven sies å beskrive hvordan et legeme beveger seg i dette referansesystemet da den påvirkes av krefter. Her er det delte meninger om hvordan begrepet ''krefter'' skal tolkes. En oppfatning er at den andre loven skal ses som en definisjon av begrepet kraft i form av masse og akselerasjon. Det fins minst tre sterke innvendinger mot dette synspunktet. For det første defineres bare summen av de de virkende kreftene på legemet, selv om det er slik at legemet påvirkes av et antall ulike krefter med forskjellige kilder. For det andre blir hele definisjonen meningsløs for et legeme i ro. For det tredje fins det ingen muligheter til å gjøre noen som helst forutsigelser om virkeligheten med et slikt synspunkt. En mer framkommelig vei skulle kunne være å la krefter defineres av andre fysiske lover, det vil si lovene for [[gravitasjon]] og [[elektromagnetisme]]. Dette må være mulig å utføre i teorien, men i praksis er det ikke mulig å utføre kvantitative beregninger på denne måten. I den klassiske mekanikken betraktes derfor krefter som et begrep der kraften som et legeme utøver på en annen defineres fra tilfelle til tilfelle avhengig av opprinnelse. Visse krefter er bestemte av det påvirkede legemets posisjon og bevegelsestilstand, for eksempel gravitasjonskrefter, elastiske kontaktkrefter, luft- og strømningsmotstand, og kan beregnes ved hjelp av eksisterende modeller. Andre krefter oppstår ved kontakter der et legeme er utsatt for friksjon, det vil si en innskrenkning i dets mulighet til å forflytte seg.
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Denne siden er medlem av 2 skjulte kategorier:
Kategori:1000 artikler enhver Wikipedia bør ha
Kategori:Artikler uten referanser
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon