Redigerer
Vannkraftverk
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
=== Turbinen === {{Utdypende artikkel|Turbin|Vannturbin}} [[Fil:Water Turbine Chart.png|mini|upright=1.2|Diagram som viser anvendelsesområdet for forskjellige turbiner ut fra fallhøyde (head) og vannmengde (flow). Effekten ut fra kombinasjonen av de to størrelsene er vist som diagonale linjer.]] Turbinen i kraftverket omformer vannets potensielle energi (trykk) og kinetisk energi (hastighet) til rotasjonsenergi, som igjen driver rundt generatoren som produserer elektrisitet. Felles for alle vannturbiner (vannkraftmaskiner) er at et såkalt løpehjul settes i rotasjon av vannet som ledes inn mot det. På løpehjulet er det festet skovler og utformingen av disse er karakteristiske for de forskjellige turbintypene. Til alle turbiner er det et organ som kan endre pådraget, altså vanngjennomstrømningen, og kontrollere dette. Utformingen ellers kan være høyst forskjellig. I en [[impuls (fysikk)|impulsturbin]] endres strømningsretningen til vannet av skovlene som treffes av én eller flere vannstråler med meget høy hastighet. Resulterende impuls får løpehjulet til å rotere og vannet forlater turbinen med sterkt redusert kinetisk energi, allikevel skjer det ingen trykkendring i vannet gjennom turbinen. [[Newtons bevegelseslover|Newtons andre lov]] beskriver overføring av energi som skjer. Den vanligste impulsturbinen i dag er peltonturbinen. I en reaksjonsturbin skjer energiomformingen både ved omforming av kinetisk- og potensiell energi (trykk). De roterende delene i en reaksjonsturbin må være innkapslet i et hus for å motstå vanntrykk og ofte suget på utløpssiden. Disse er utformet vesentlig annerledes enn en impulsturbin der løpehjulet roterer i friluft. [[Newtons bevegelseslover|Newtons tredje lov]] beskriver energioverføringen i en reaksjonsturbin. De mest vanlige reaksjonsturbiner i dag er francis- og kaplanturbinen. Sammenlignes en vannturbin med et tradisjonelt vannhjul, er det noen konstruksjonsmessige forhold som gjør at en turbin er en mye mer effektiv maskin. Hovedforskjellen mellom tidlig vannhjul og kvernkaller, er at en virvelkomponent (i matematikken brukes det engelske ordet «curl», som også brukes på norsk) av det strømmende vannet overfører energi til løpehjulet. På grunn av denne ekstra bevegelseskomponent tillates turbinen å være betydelig mindre enn et vannhjul med samme ytelse. Da turbinene ble introdusert kunne de utnytte en større vannmengde ved å rotere betydelig raskere enn vannhjulene. Den elementære sammenhengen for utviklet effekt ved rotasjon er W= F·ω , der P er effekt [Watt], T er dreiemoment [Nm] (kraft x arm) og ω er vinkelhastigheten [rad/s]. Av denne sammenhengen ser en at et høyt omdreiningstall gir stor ytelse, selv om momentet er lite. En annen fordel som gjelder med vannturbiner er at de kan utnytte mye større fallhøyder, enn et vannhjul. Istedenfor å utnytte noen få meter av et vannfall med et vannhjul, kan en vannturbin utnytte fallhøyder på godt over 1000 meter. I tidlig utvikling av turbinkonstruksjoner var disse gjerne fysisk små, sammenlignet med dagens turbiner. En grunn til dette var verktøymaskiner og vansker med transport gjorde store turbiner problematisk. Moderne turbiner gjøres store og dette gjør at virkningsgrad også blir større. En annen ting er at kraftstasjonene kan gjøres mindre og mer kompakte med få og store turbiner.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 57.]]</ref> Et eksempel er[[Vemork| Vemork kraftverk]] som stod ferdig i 1911 og var verdens største kraftverk med 10 turbiner. Samlet ytelse for disse turbinene var på 108 MW. Da det ble bygget et nytt kraftverk som erstatning for det gamle i 1971, fikk dette en bestykning på kun to francisturbiner med en samlet ytelse på 200 MW.<ref>{{Kilde www|url=https://snl.no/Vemork_kraftverk |tittel= Vemork kraftverk | besøksdato= 27. november 2014 |forfatter= Knut A Rosvold |utgivelsesdato= 15. mai 2013 |utgiver= Store norske leksikon.}}</ref> ==== Peltonturbinen ==== {{Main|Peltonturbin}} [[File:S vs pelton schnitt 1 zoom.png|thumb|right|Tegning av en moderne peltonturbin med vertikal aksling og seks dyser. De blå rørene ytterst er ringledningen og innenfor er grenrørene til hver av dysene. Videre er de grønne delene ventiler, selve hovedstengeventilen (vanligvis en [[kuleventil]]) til venstre nederst og videre de seks symmetrisk plasserte dysene. Løpehjulet i rødt helt i senter. Legg merke til den gradvise nedtrappingen av ringledningens diameter. Gjengitt med tillatelse fra [[Siemens AG|Voith-Siemens]].]] Peltonturbinen brukes for høye trykk, men om vannføringen i vassdraget er liten kan den tilpasses kraftstasjoner for lav fallhøyde, se diagrammet over til høyre. Generelt er peltonturbinen den foretrukne turbintypen for utnyttelse av vannfall med stor fallhøyde og små vannmengder. Den største fallhøyden for et kraftverk noe sted i verden er [[Bieudron kraftverk]] i Sveits med 1 883 meter. Kraftverket har tre peltonturbiner som er verdens største med en ytelse på 423 MW hver.<ref>{{Kilde www|url=http://www.grande-dixence.ch/energie/hydraulic/switzerland/bieudron-power-station-altitude.html |tittel=The Bieudron power station |besøksdato=25. oktober 2014 |forfatter= |utgivelsesdato= |utgiver=Grande Dixence SA. |url-status=død |arkivurl=https://web.archive.org/web/20100225031738/http://www.grande-dixence.ch/energie/hydraulic/switzerland/bieudron-power-station-altitude.html |arkivdato=2010-02-25 }}</ref> I Norge har [[Sima kraftverk]] den høyeste fallhøyden på 1 152 meter. I dette kraftverket er det to peltonturbiner. Sammen med to andre enda større turbiner i samme installasjon utgjør dette Norges nest største kraftverk. Sima kraftverk har også de største peltonturbinene i Norge når det gjelder ytelsen, som er på 310 MW per enhet.<ref>{{Kilde www |url=http://www.statkraft.no/Energikilder/vaare-kraftverk/norge/Sima/ |tittel=Sima |besøksdato=25. oktober 2014 |forfatter= |utgivelsesdato= |utgiver=Statkraft SF. |arkiv-dato=2014-11-03 |arkiv-url=https://web.archive.org/web/20141103100237/http://www.statkraft.no/Energikilder/vaare-kraftverk/norge/Sima/ |url-status=yes }}</ref> Peltonturbinen kjennetegnes med sitt spesielle løpehjul med skovler utformet som doble skåler med en kvass egg i midten. Hver av skålene er ovale og står montert tett langs periferien av løpehjulet. Vannstrålen fra dysen treffer eggen midt på og den kløyves, følger skålenes periferi og forlater dem etter å ha gjort en tilnærmet «u-sving». Denne bevegelsen med retningsforandring av vannet gir impuls, og størst moment virker på løpehjulet om hastigheten av løpehjulets periferi er tilnærmet av halvparten av strålehastigheten. Tidligere ble skovlene laget av støypejern og skrudd på løpehjulskiven med bolter og skruer. Med utviklingen opp mot stadig større fallhøyde og påkjenninger ble det utviklet helstøpte hjul i rustfritt stål. Alle flatene som blir påvirket av vann er frest, slipt og polert.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 29.]]</ref> For en eller to stråler i en peltonturbin er gjerne akslingen horisontal. Ofte er det flere enn to dyser langs turbinhusets periferi, spesielt når turbinens slukeevne skal gjøres stor, og da velger en å la turbinen ha vertikal aksling. Da vil arrangementet av rørene som fører vannet frem til dysene bli enklere. Disse tilførselrørene kalles ''grenrør'' og som navnet sier er dette rør som føres som greiner ut av ''ringledningen'', se tegningen til høyre. Turbinhuset er laget av stålplater og på store turbiner er både turbinhuset, greinrørene og ringledningen støpt inn i betong. For inspeksjon er det mulig å komme til løpehjulet under. For å komme inn i ringeledningene for inspeksjon er det ''mannhull'' som en kan krype inn gjennom. I hver dyse er det en nål som kan reguleres ut og inn, dermed kan vannstrålens tykkelse reguleres og ytelsen avgitt fra turbinen reguleres med disse. Når dysene stilles helt inn tetter den helt for vannet. Fra laveste til høyeste effekt åpnes én etter én dyse i intervaller for pådraget. Dermed kan virkningsgraden for en flerstrålet peltonturbin bli meget høy over et stort pådragsområde. En moderne peltonturbin har en virkningsgrad på rundt 92 %.<ref name="CVS7" /> Ved et hurtig lastavslag, altså at generatoren plutselig må levere mindre eller ingen effekt, er det fare for at turtallet stiger raskt. Det er heller ikke ønskelig å stenge dysene for hurtig på grunn av store trykkendringer i vannveien. Om dette kan bli et problem er det for hver dyse en såkalt ''stråleavbøyer'' eller ''deflektor'' som skjærer inn i strålen og avskjærer den fra å treffe løpehjulet. Deretter kan dysenes nåler justeres sakte og kontrollert ned. Dysenålene og deflektorene blir regulert av et hydraulikkaggregat som er koblet til turbinregulatoren, som blir beskrevet lenger ned. Vannet faller mer eller mindre ut dødt fra løpehjulet, altså at det har svært liten hastighet når det forlater turbinen. Under turbinen er det en avløpskanal som fører vannet tilbake til vassdraget eller ut i havet. ==== Francisturbinen ==== {{Main|Francisturbin}} [[Image:M vs francis schnitt 1 zoom.jpg|thumb|Tegning som viser gjennomskåret tverrsnitt av en francisturbin med vertikal aksling. Vannet ankommer horisontalt i den spiralformede turbintrommen (blå) som gir vannet rotasjonsbevegelse. I senter av turbintrommen er løpehjulet (rødt) montert. Rundt løpehjulet står ledeskovlene (grønne). Disse kan regulere vannmengden etter pådraget fra full effekt ned til avstengt. Vannet forlater turbinen vertikalt under løpehjulet i et rør som kalles sugerør eller diffusor. Gjengitt med tillatelse fra [[Siemens AG|Voith-Siemens]].]] Francisturbinen er best egnet for lave og middels høye fallhøyder, fra rundt 40 til 600 meter, i noen tilfeller enda høyere.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 58.]]</ref>. Den har en virkningsgrad på 92 % eller litt høyere. Virkningsgraden varierer noe over pådragsområdet og mer enn for en flerstrålet peltonturbin.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 17.]]</ref>. Turbinen er oppbygd av en ''spiraltromme'' som har stadig avtrappende diameter. Den ligner derfor på et sneglehus. I midten av denne spiraltrommen står løpehjulet. Langs den indre periferien av spiraltrommen er ledeskovlene montert. Disse kan regulere vannstrømmen inn på løpehjulet fra fullt åpen til stengt. Alle ledeskovlene er mekanisk lenket sammen slik at de beveger seg synkront og kalles ledeapparatet. Ledeskovlene gir vannet en hurtig rotasjonsbevegelse og vannet beveger seg gjennom løpehjulet og utnytter prinsippet om reaksjon. Vannets potensielle- og kinetiske energi (trykk og hastighet) blir avgitt gjennom løpehjulet. I motsetning til peltonturbinen skjer det altså endring av både trykk og hastighet for vannet i denne turbintypen. Turbinhuset er viktig for å styre vannet gjennom turbinen. Når vannet forlater selve turbinen føres det ned i et rør rett under løpehjulet. Dette røret kan i noen tilfeller være laget for å skape sug under turbinen. Det kalles derfor for et ''sugerør'' eller en ''difusor''. Etter sugerøret føres vannet i en sjakt hvor det endrer retning fra vertikalt til horisontalt. Vannet føres videre ut avløpskanalen og tilbake til vassdraget eller direkte til havet. Utviklingen av francisturbiner har gått i retning av å gjøre dem så små som mulig. Dette betyr at omdreiningstall og vannhastigheten må økes. Dette kan føre til [[kavitasjon]]serosjon på løpehjulet. Et lavere sug i diffusoren vil redusere faren for kavitasjon. Det er derfor blitt vanlig å plassere francisturbiner noe lavere enn vannspeilet ved utløpet, noe som kalles ''dykking''. Dykkingen måles som den vertikale avstanden fra løpehjulet til vannspeilet ved utløpet.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 56.]]</ref>. Før 1920 var francisturbinene konstruert av støpejern, så gikk en over til ''støpestål'' og ''klinkede platekonstruksjoner'' i 1930-årene. Utviklingen har videre gått i retning av sveisede platekonstruksjoner.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 56-57.]]</ref>. Turbinhuset og tilløpsrøret til francisturbinen blir støpt inn i betong i moderne kraftstasjoner. Tidligere var alltid akslingene horisontale og turbinhuset stod montert i kraftstasjonen, dette gjøres i dag bare i små kraftverk. ==== Kaplanturbinen ==== {{Main|Kaplanturbin}} [[File:S vs kaplan schnitt 1 zoom.jpg|thumb|Gjennomskåret tverrsnitt av en kaplanturbin, der løpehjulet, akslingen og andre roterende deler er markert med rødt. Ledeskovlene og mekanismene i tilknytning er grønne, mens lagrene er markert med gult. Legg merke til at selve turbintrommen er så stor at bare en del av denne er med på tegningen. Gjengitt med tillatelse fra [[Siemens AG|Voith-Siemens]].]] Kaplanturbinen er en turbin av reaksjonstypen, som betyr at vannet gir fra seg potensiell energi (trykk) gjennom den. Turbintypen passer for små fallhøyder og store vannmengder. Virkningsgraden kan typisk være opp mot 93 %<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 19.]]</ref>, altså like mye som for francisturbinen. Løpehjulet ser ut som en skipspropell og konstruksjonen er en videreutvikling av francisturbinen. Spiraltrommen med ledeskovler er veldig lik francisturbinen, stort sett er det løpehjulet som er vesensforskjellig. Ledeskovlene setter opp en roterende vannstrøm radielt på akslingen, vannstrømmen bøyer av slik at den treffer løpehjulet i aksiell retning. Som regel er bladene (skovlene) på løpehjulet vribare, noe som gjør at virkningsgraden kan bli høy over et stort pådragsområde. Ledeskovlene brukes til å justere pådraget, mens justeringen av bladene på løpehjulet gjøres for å optimalisere virkningsgraden for valgt pådrag. Moderne kaplanturbiner har løpehjul i ''rustfritt kromnikkelstål'', noe som er et materiale motstandsdyktig mot kavitasjon. Videre har en funnet at om fallhøyden skal økes for denne turbintypen må skovlene forlenges i strømningsretning og antallet skovler økes med opptil åtte enheter. Dette har gjort at kaplanturbinen nå kan egne seg for fall helt opp mot 60 til 70 meter. Imidlertid byr det på konstruksjonsmessige utfordringer fordi navet i senter av løpehjulet blir komplisert med alle delene som da skal få plass. Kaplanturbiner for fallhøyder over 50 meter blir gjerne kalt for høytrykks-kaplanturbin.<ref name="CVS95">[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 95.]]</ref> Illustrasjonen til høyre viser en kaplanturbin med bare fire skovler, som altså egner seg best for små fall. Legg merke til personen som står ved siden av turbinen, og som illustrerer de store dimensjonene det er snakk om for aggregatet. Videre kan en se at rotoren til generatoren, altså skiven i rødt øverst, har meget stor diameter i forhold til resten av konstruksjonen. Grunnen er lav hastighet og mange poler, som gjør at generatoren blir kostbar. Mer om dette i avsnittet lenger ned om generatoren. Materialet for konstruksjon av kaplanturbiner er sveiste stålplater, og som nevnt kromnikkelstål for løpehjulet. Selve navet blir sveist av smidde plateemner. Vanligvis blir turbinhuset støpt inn i betong, men det hender at hele turbinhuset lages utelukket av betong. Også denne turbintypen blir stort sett konstruert for oppstilling med vertikal aksling.<ref name="CVS95" /> Kraftstasjoner med kaplanturbin har ofte bare én stor turbin og disse er sjelden sprengt ut i fjell. Ofte er kraftstasjonen og demningen del av samme bygningskropp. Bildet helt først i artikkelen viser en stilisert kraftstasjon som gjerne kan ha kaplanturbin. Turbinen er sjelden dykket, altså at den ligger lavere enn vannspeilet til utløpet, dette på grunn av at bygningsmessige forhold gjør det vanskelig med et dyptgående sugerør.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 97.]]</ref> Sugerøret eller diffusoren under turbintrommen skal sørge for at vannets hastighet omsettes til trykk (undertrykk) og påvirker turbinens virkningsgrad. Røret anlegges gjerne så grunt som mulig og lages oftest rektangulært ved utløpet. Konusen, altså den første delen av sugerøret ut av turbintrommen lages av stålplater, mens den siste delen lages av betong.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 102.]]</ref> ==== Bulbturbinen ==== [[File:Mihla Kraftwerk Kaplan Turbine.jpg|thumb|Skisse av en bulbturbin for et lite kraftverk med svært liten fallhøyde.]] Bulbturbinen, eller ''rørturbinen'' er så lik kaplanturbinen at den i mange sammenhenger ikke omtales som en egen turbintype. Løpehjulet er helt likt det for kaplanturbinen, men det står ikke inne i en turbintromme. Istedenfor er akslingen horisontalt oppstilt og stikker ut av en stor bulb (fornorskning av det engelske ordet for lyspære) der generatoren er innbygd, og det hele er montert i senter av et rør. Til forveksling ligner dette på en ubåt med en stor propell plassert inne i et stort rør, se illustrasjon til høyre. Vannet strømmer aksielt inn på ledeskovlene, og disse heller vanligvis 60° i forhold til akslingen. Etter løpehjulet følger et sugerør.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 105.]]</ref> Bruksområdet for denne turbintypen er vannfall med store vannmengder og liten fallhøyde, maksimalt 20 til 25 meter, men gjerne enda mindre. En regner maksimalytelsen til å være rundt 60 MW. Spesielt egner den seg for elvekraftverk og en fordel er at bygningsmessige forhold blir enklere og billigere enn om en kaplanturbin benyttes. Dette har å gjøre med mindre høyde og bredde for bygningen.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 108.]]</ref> Det er ikke mange kraftverk med denne turbintypen i Norge, men [[Kongsvinger kraftverk]], [[Braskereidfoss kraftverk]] og [[Pikerfoss kraftverk]] er eksempler der bulbturbin er installert. ==== Andre turbintyper ==== [[File:Mikrohidro crossflow.JPG|thumb|Cross-flow turbin for et meget lite vannkraftverk. {{Byline|Lilis Sucahyo}}]] Det finnes en rekke andre vannturbiner enn de som er beskrevet her, noen har størst historisk interesse, mens andre brukes utelukkende for mindre vannkraftverker. [[Turgoturbinen]] er en turbin som har visse likheter med peltonturbinen, men skålene på løpehjulet er formet som en halv skål. Hele strålen avbøyes i en retning, og kløyves ikke som i en peltonturbin. En annen turbin med en viss utbredelse er [[Bankiturbin]]en. Felles for disse er at de har betydelig lavere virkningsgrad enn de vanligste turbintypene, men de er gjerne billigere å produsere. ==== Valg av turbintype ==== [[File:Fossheimfoss kraftverk.JPG|thumb|[[Fossheimfoss kraftverk]] er et eksempel på et vannkraftverk der en stod ovenfor kompliserte overveielser ved valg av turbintype. Valget stod mellom bulbturbin med S-formet tilløp, bulbturbin med S-formet utløp, tre [[francisturbin]]er med vertikal aksling eller én [[kaplanturbin]] med vertikal aksling.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 22.]]</ref> Valget falt til slutt på en kaplanturbin.]] Valg av turbintype avhenger av forhold som fallhøyde, vannføring (slukeevnen), belastningsforløp, prisen for solgt elektrisk kraft og vannkvaliteten (forurensning og sand). De to mest avgjørende faktorene er gjerne fallhøyde og slukeevnen. Ofte er det ønskelig med to eller flere turbiner i kraftstasjonen, dermed skal den totale vannføringen fordeles på flere turbiner, og valget av type kan bli avhengig av antallet turbiner.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 16-17.]]</ref> I valget står en noen ganger mellom en peltonturbin eller francisturbin, og i slike tvilstilfeller ligger gjerne fallhøyden mellom 500 og 700 meter. Dette kaller en gjerne for midlere fallhøyder. Her kan virkningsgradskarakteristikkene komme inn i bildet, se figuren til oppe til høyre der avsnittet om turbiner begynner. Generelt er maksimal virkningsgrad for en francisturbin høyest, men en peltonturbin med flere stråler har høyere virkningsgrad over et større pådragsområde. Virkningsgraden for en flerstrålet peltonturbin kan være over 90 % i intervallet fra 25 til 150 % av nominell effekt. Forventes det varierende pådrag vil peltonturbinen dermed kunne være mest gunstig. Et annet forhold er at francisturbinen krever utsprengning og stor plass for sugerøret. På den annen side vil peltonturbinen der den brukes for midlere fallhøyde og gjerne stor slukeevne, ha lav vannhastighet og konstrueres med mange stråler med stor diameter, og dermed lavt omdreiningstall. Dette betyr i neste omgang en større generator (flere poler ved lav hastighet) som er mer kostbar. Imidlertid vil de totale investeringskostnadene gjerne være små i forhold til kostnadsforskjellen på grunn av forskjellig virkningsgrad.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 17-18.]]</ref> Om det i tillegg må gjøres vurderinger basert på vannkvaliteten på grunn av innhold av sand kommer peltonturbinen oftest best ut. Grunnen til dette er at demontering og skifte av deler som slites av sand tar kortere tid for en peltonturbin. Valget her er også avhengig av brukstiden, om turbinen har kort brukstid vil den være ute av drift i lengre perioder og da kan den også vedlikeholdes. Da kan francisturbinen komme best ut. Av alle disse momentene kan overveielsen bli et komplisert teknisk-økonomisk problem.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 18.]]</ref> Valg mellom francisturbin og kaplanturbin oppstår der fallhøyden er mellom 60-70 meter. Her er det også virkningsgradskurvene for de to turbintypene som kan bli avgjørende. Kaplanturbinen har med sine vribare løpehjulskovler en virkningsgrad som er stor over et mye større pådragsområde enn francisturbinen. Dermed faller kaplanturbinen gunstig ut om aggregatene ofte vil kjøres med redusert pådrag. Av ulempene med kaplanturbinen er at den er mer kostbar og den er i tillegg mer utsatt for kavitajson. Kaplanturbinen må dykkes mer, noe som igjen øker utbyggingskostnadene.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 19-20.]]</ref> For svært lave fallhøyder, under 20 meter, kan valget stå mellom en kaplanturbin og en bulbturbin. Bulbturbinen har mer gunstig strømningsforhold inn på løpehjulet. Dette gjør at løpehjulets diameter for bulbturbinen under ellers like forhold kan reduseres med 15 % i forhold til kaplanturbinen. En annen konsekvens av dette er noe bedre virkningsgrad. Bulbturbinen har bedre egenskaper når det gjelder kavitasjon, og dette gjør igjen at den ikke trenger å være så mye dykket som kaplanturbinen. Bygningskonstruksjonen for en bulbturbin kan dermed bli lavere og mer kompakt, dermed reduseres kostnadene ytterligere. Bulbturbinen kommer enda gunstigere ut i sammenligningen om det må være flere turbiner. Dette fordi spiraltrommen gjør kraftstasjonen bredere. På den anen side er bulbturbinen kostbarere i seg selv.<ref>[[#Turbiner|Casper Vogt-Svendsen: ''Turbiner'' side 20.]]</ref>
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Denne siden er medlem av 5 skjulte kategorier:
Kategori:Anbefalte artikler
Kategori:Artikler med offisielle lenker og uten kobling til Wikidata
Kategori:Artikler uten offisielle lenker fra Wikidata
Kategori:CS1-vedlikehold: Uheldig URL
Kategori:Sider med kildemaler som mangler arkivdato
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon