Redigerer
Vannkraftverk
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
==== Svingekammer ==== [[File:Swing chamber.jpg|thumb|Svingekammer som skal ta imot vann-<br /> massene i tilløpstunnelen når turbinene i kraftverket reduserer eller øker pådraget. Den øverste typen viser tidlig utforming der vannspeilet i sjakten vil kunne få store endringer (svingninger). Bokstavene betyr i den øverste skissen: A – tilløpstunnel, B – svingekammer og C – trykksjakt. I den nederste skissen er det vist en nyere utforming som skal forhindre store trykk- og vannstandsvariasjoner. Bokstavene betyr: A – tilløpstunnel, B – øvre horisontale svinge-<br /> kammer og C – nedre horisontale svingekammer. Øvre- og nedre svinge-<br /> kammer er rett over og under normal vannstand i inntaksdammen.]] Massen av vannet i vannveien kan være mange tusen tonn og selv om dette ikke beveger seg like fort som et godstog, vil det allikevel kreve en viss tid for å stoppe. Selv om kraftverket vanligvis går med nokså konstant pådrag vil produksjonen variere noe gjennom døgnet. En annen ting er at en nødssituasjon kan gjøre at kraftverket må stanses hurtig. Omvendt kan et kraftverk som er stanset plutselig få beskjed om å starte opp. Det påvirker vannhastigheten i vannveien, og på grunn av [[bevegelsesmengde]]n som vannet har kan store trykkrefter oppstå. For tidligere arrangementer var gjerne de største vannmassene i tilløpstunnelen på grunn av stort tverrsnitt, denne var gjerne også lengst. Vannet i denne tar gjerne lengst tid å stoppe. Dermed ble det laget et stort kammer i overgangen mellom tilløpstunnel og trykksjakt. Dette er vist i skissen til høyre. Virkemåten er slik at om pådraget til kraftverket brått må reduseres, vil vannmassene fra tilløpstunnelen kunne fylles opp i svingkammeret. Når svingekammeret fylles opp, bygges også høyden og trykket opp, det oppstår et mottrykk og vannet i tilløpstunnelen snur retning og fosser tilbake mot inntaksdammen. Dermed kan vannspeilet i svingekammeret komme under vannspeilet i inntaksdammen, og etter en tid vil vannet strømme tilbake og fylle opp svingekammeret på nytt. Et motsatt tilfelle kan være at turbinene i kraftverket startes opp etter en stans og vannet i trykksjakten settes raskt i bevegelse. Vannet i tilløpstunnelen kommer ikke like raskt opp i bevegelse og dermed vil vannet i svingekammeret tappes ned, og dette fører igjen til at vannet i tilløpstunnelen i neste omgang strømmer med stor fart for å fylle opp svingkammeret. I begge tilfellene beskrevet over oppstår det en svingning der vannet farer frem og tilbake en stund. Friksjonen demper ut svingningene og likevekt oppstår etter en tid. Imidlertid kan det skje at disse endringene får ''turbinregulatorene'', som regulerer pådraget til turbinen, til å regulere pådraget i samme fase og [[frekvens]], dermed vil svingningene heller forsterkes enn dempes ut. Mer om dette i avsnittet lenger ned om turbinregulatorene. En løsning for å dempe ut svingningene er å utforme svingekammeret med store horisontale rom, slik som vist i den nederste skissen i figuren til venstre. Her er det vist et kammer like over normal vannstand og ett like under normal vannstand. Disse kan utformes til å ta opp store vannmengder uten at vannhøyden får store variasjoner. Det øvre kammeret vil fylles opp ved reduksjon av pådraget i turbinen, mens det lavere vil tømmes ned når pådraget økes. Slik kan store trykkdifferanser som forstyrrer turbinregulatoren unngås. I moderne kraftverk er det som nevnt gjerne ikke tilløpstunnel, men en lang trykksjakt. Også her kan det bli trykkstigninger som må dempes og i 1970-årene ble det utviklet et nytt konsept med et luftputekammer nært kraftstasjonen. Her er det altså ikke noe vannsøyle med fri overflate, men et kammer med trykkluft. Dette kammeret må sprenges ut i fjell som er kompakt og tett. Tilleggstetting i form av sementinjeksjon eller andre metoder kan bli nødvendig. Trykket holdes ved like ved hjelp av en kompressor. Det første kraftverket i verden der dette ble gjort var [[Driva kraftverk]] i Møre og Romsdal i 1973. Dette høytrykks luftputekammeret var forutsetningen for å kunne bygge en lang skråstilt trykksjakt uten noen tilløptunnel. En stor fordel med dette var at tunnelen kunne drives nede fra kraftstasjonen og oppover i fjellet. Dermed kunne en bygge store kraftverk og unngå anleggsveger og massedeponier lenger opp i fjellet.<ref name="LT66">[[#DK|Lars Thune m.fl.: ''Kulturminner i norsk kraftproduksjon'' side 66.]]</ref> Det er gjort mye forskning angående luftputekammeret og dempning av svingningene. Svingningene som oppstår vil nemlig påvirke og gi samvirkning med turbin, generator og regulatorer, noe som kan være opphav til elektriske [[oscillasjon]]er i kraftnettet. Et spesielt forhold med luftputekammeret er den enorme energimengden som er lagret i den komprimerte luften. I [[Kvilldal kraftverk]] har luftputekammeret et volum på 125 000 m<sup>3</sup> og representerer en sprengkraft på hele 200 [[Trinitrotoluen|tonn TNT]]. Dette representerer en såpass stor risiko at det er ikke mindre enn tre uavhengige sikringssystemer for å unngå ulykker.<ref>[[#VN|Vidkunn Hveding: ''Vannkraft i Norge'' side 54.]]</ref> I kraftverkene utover på1900-tallet var det vanlig med én tilløpstunnel og flere turbinrør ned til kraftstasjonen. En viktig tilleggsfunksjon for svingekammeret var da å fordele vannet og gi det jevn hastighet rett inn mot starten av rørene. Dermed ble dette gitt navnet fordelingskammer. Andre navn har vært avdrags- og pådragskammer og utjevningsbasseng. I noen tilfeller hadde en ikke mulighet til å ha svingekammeret i fjell, og da ble det laget en høy tank eller tårn som vannet kunne stige opp og ned i. Dette kan en se i [[Røyrvikfoss kraftverk]] i Nord-Trøndelag fra 1965.<ref name="LT66" /> [[Hensfoss kraftverk]] har en stor tank som også fordeler vannet til to rør.
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Denne siden er medlem av 5 skjulte kategorier:
Kategori:Anbefalte artikler
Kategori:Artikler med offisielle lenker og uten kobling til Wikidata
Kategori:Artikler uten offisielle lenker fra Wikidata
Kategori:CS1-vedlikehold: Uheldig URL
Kategori:Sider med kildemaler som mangler arkivdato
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon