Redigerer
Kondensator (elektrisk)
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
== Praktiske byggemåter == Det finnes en rekke materialer som kan brukes som dielektrikum. Alle brukbare dielektrika er gode isolatorer. En gammel klassiker er glimmer. Oljet papir, papir, porselen og glass har vært i bruk lenge. Forskjellige kunststoffer brukes, såsom et rikt utvalg av klassiske og moderne keramiske stoffer. Kunststoffer kan være eksempelvis polyester, polykarbonat, polypropylen, polystyren og teflon (sistnevnte er sjeldent og dyrt, men best for de fleste parametrene). Egenskaper som er forskjellige for forskjellige dielektrika er * permittiviteten * temperaturkonstans av permittiviteten * frekvensområde * ulineær forvrengning (kapasitetens spenningsavhengighet) * fuktighetsinnflytelse * ledningsevne (lekkasje) * andre tap * levetid (aldringsinnflytelse på permittiviteten) * spenningstoleranse (feltstyrke som vil gi overslag) * polarisering (se nedenfor) * memory-effekt * og flere Memory-effekten beskriver det faktum at en ladet kondensator som kort blir utladet til null spenning gjennom en strømvei, etter hvert vil bygge opp en liten ladning igjen, hvis strømveien fjernes slik at minst en pol er fri (utilkoplet). For kunststoff-folier er de fleste kondensatorer viklet med to isolerende og to ledende lag som er litt forskjøvet i forhold til hverandre. For å unngå induktiviteter er endespiralene forbundet, ofte loddet. I moderne SMD-kondensatorer skapes det forholdsvis store arealer ved å stable masse tynne ledende lag (med dielektrium imellom) på hverandre og så forbinde endene på annenhver leder med hverandre. Tidligere radiomottakere brukte mekanisk variable kondensatorer for avstemning, og trimmekondensatorer for intern finjustering. Fra halvlederverdenen kommer [[diode|kapasitetsdioden]] som oppviser en kapasitans som varierer med sperrespenningen som tilføres den. Dersom kapasiteten til en ladet kondensator skulle forandre seg, blir ladningen Q (og derfor energien) beholdt og spenningen endrer seg tilsvarende slik at U = Q/C. Dette utnyttes i såkalte [[mikrofon|kondensatormikrofoner]]. Slike mikrofoner blir lett lineære fordi den mekaniske konstruksjonen er så enkel og membranet så lett. === SMD-kondensatorer === [[Fil:MLCC-Structure-Details.svg|mini|Oppbygningen av en flerlags keramisk SMD-kondensator. 1. Keramisk dielektrikum, <br />2. Lakk eller keramisk mantel, <br />3. Metallisert elektrode, <br />4. Tilkoplinger]] Moderne kondensatorer fremstilles for å loddes [[overflatemontering|direkte]] på printkortets overflate, de har altså ingen tilledninger. De lages så små som mulig. Materialet for ikke-elektrolytter er alltid keramisk og kondensatoren er bygd opp med masse tynne stablete sjikt. Elektrolyttkondensatorer baserer seg på transisjonsmetallet ''tantal'', et grunnstoff. Kvaliteten på kondensatorene er delt i to hovedgrupper av EIA-spesifikasjoner og i [[International Electrotechnical Commission|IEC]] 60384-8/9/21/22; klasse 1 (gode) og klasse 2 (dårligere). For klasse 1 er spesifikasjonene NP0 og C0G i bruk. En typisk klasse 2 spesifikasjon er X7R, men det fins mange flere. Hovedsakelig er temperaturkoeffisienten spesifisert; den utgjør nullen i betegnelsen NP0 og C0G. Ellers er parametre som kapasitetsvariasjon med tilført spenning viktig fordi den sier noe om hvor mye forvrengning kondensatoren kan innføre. Frem til nylig (2008) var det ikke mulig å lage klasse 1 SMD kondensatorer med verdier over cirka 4.7 nF. Nylig (2008) er det imidlertid kommet små klasse 1 kondensatorer på markedet, med verdier opp til cirka 220 nF i 25 og 50 V utførelser. Typisk blir klasse 2 kondensatorer brukt til avkoplinger og andre ukritiske formål, mens klasse 1 brukes i signalveier og for stabil tids- eller frekvensstyring. X7R-typer har langt mindre volum enn NP0-typer for samme kapasitet og maksimalspenning, og også lavere pris. Målene sett ovenfra («footprint») er gitt i tusendels tommer (0.0254 mm) som LengdeBredde. 0404 ville slik bety ca 1×1 mm. 0805 og 0603 er små verdier, 1210 en noe større. === Elektrolyttkondensatorer === For å oppnå store kapasitetsverdier på små volum er det tre veier å gå: 1) Å bruke et materiale med svært høy permittivitet (dielektrisitetskonstant). 2) Å få ned avstanden mellom platene. 3) Å få opp platenes arealer. Den første metoden brukes blant annet i små, moderne, overflatemonterte komponenter med høyperimittive keramiske stoffer. De er ikke elektrolyttkondensatorer. De to siste metodene er samtidig i bruk i såkalte elektrolyttkondensatorer. En [[elektrolytt]] er en løsning av et stoff som i vann spaltes i [[ioner]], som en [[syre]] eller [[base]], og som derfor leder elektrisk strøm godt. Man lar elektrolytten kjemisk danne et n-atomtykt ikke-ledende sjikt på den ene kondensatorpolen og selv opptre som intern leder med kontakt til den andre polen. (n er et lavt tall.) Flatene er gjort svært skrukkete, eller matte, ved etsing for å øke den effektive overflaten. Kondensatorer fremstilt på denne måten er polariserte; de tåler likespenning i kun en gitt retning. Feilpolarisering vil kunne skade komponenten permanent. Tilkoplingene er merket med + og -. Det går ikke DC strøm igjennom en kondensator, men ved oppladning og utladning kan det gå strøm i begge retninger i tilkoblingene til kondensatoren. Elektrolyttkondensatorer er noe mere begrenset i frekvensområdet enn andre kondensatorer. Over frekvenser rundt 1 MHz blir den beheftet med tap. I apparater hvor kondensatoren også skal avkople høyere frekvenser, bør den parallellkoples med en annen type kondensator med lavere verdi. Elektrolyttkondensatorer kan skades ved lang tids lagring (år). Ved fremstillingen blir sjiktet dannet ved at kondensatoren blir gitt en spenning. Uten bruk i lang tid vil sjiktet kunne skades av elektrolytten. I apparater som har stått ubrukte lenge vil elektrolyttkondensatorene lett kortslutte ved påslag. Langsom økning (i løpet av timer) av driftsspenningen kan kunne redde dem fra dette. === Variabel kapasitet === Det fremstilles kondensatorer som har variabel, innstillbar kapasitet. Opp til 1970-årene ble slike kondensatorer laget mekanisk, men slike er ikke i bruk lenger, kanskje med unntak av i effektsendere. Også i dag{{når}} stilles mottakerfrekvenser, som ved satellittsignaler og DAB-radio, inn med LC-resonanskretser, men funksjonene er blitt mere usynlige for brukeren, da styringen gjøres digitalt og mere eller mindre automatisk. ==== Avstemming ==== [[Fil:Tuning capacitor.jpg|mini|Dreiekondensator for bruk til avstemning for mottak av AM-båndene. Rotorene er jordet, statorene er isolerte. De ytterste lagene på rotoren kunne bøyes litt for finstilling. Det fantes også systemer med tre og fire seksjoner.]] Den viktigste bruken for variable kondensatorer er å stille inn frekvensen for en kringkaster som skal mottas. Dette gjøres ved å stille inn resonansfrekvensen i flere LC-kretser med kondensatoren C, hvor L har en fast verdi, men kan koples om for forskjellige bølgebånd, Det finnes naturligvis systemer med fast C, der induktansen varieres for antennefrekvensen, men slike systemer er sjeldnere. ===== Mekanisk ===== En mekanisk utførelse for en slik avstemningskondensator har to seksjoner for en tiltenkt bruk i en [[superheterodynmottaker]]. I en slik mottaker må ikke bare antennekretsen innstilles til senderens bærebølge, men også den lokale oscillatoren, som får en frekvens som ligger i en fast frekvensavstand til antennesignalet. Av denne grunn er de to seksjonene utformet med litt forskjellige dimensjoner. I bedre mottakere var det flere like seksjoner for antennesignalet. ===== Elektrisk ===== I dag{{når}} benyttes såkalte [[kapasitetsdiode]]r til avstemning. Dette er dioder som drives i sperreretningen og derfor ikke fører likestrøm. Sperresjiktet i PN-overgangen endrer lengden med sperrespenningen; høy spenning øker lengden av sperresjiktet og fører til lav kapasitet. Den samme likespenningen brukes for å stille inn kapasiteten til flere kapasitetsdioder i forskjellige resonanskretser. Styrespenningen kan tilføres hver enkelt diode via en stor serieresistans (motstand), siden dioden sperrer for strøm. Slik holdes tapene i resonanskretsen lave. En slik løsning er mye billigere, volumsparende og fleksibel enn ved bruk av en mekanisk kondensator. Diodene kan innebygges i integrerte krestser som bare trenger noen få ekstra komponenter for å utgjøre en komplett mottaker. ==== Trimming ==== Før kapasitetsdionenes tid ble det brukt variable kondensatorer som var tiltenkt en fast innstilling med skrujern i et verksted eller ved apparatets produksjon. Denne funksjonen gjøres også i dag{{når}} for at de forskjellige avstemte kretsene skal arbeide på nøyaktig de samme frekvensene over hele frekvensbåndet. I dag{{når}} utføres slikt ved å stille inn styrespenningens detaljerte endring med ønsket frekvens, gjerne lagret i en digital hukommelse, men i en overgangstid ble detaljene stilt inn med trimmepotentiometre, variable resistanser. === Super- og hyperkondensatorer === Disse baserer seg på relativt nye teknologier og danner en mellomting mellom batterier og kondensatorer. De har lavere kapasitet per volum en batterier, men tillater store og hyppige lade/utladestrømmer. De kan brukes både til energi og til statiske formål. Kapasiteter kan være svært store, som 10 000 F.
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Denne siden er medlem av 3 skjulte kategorier:
Kategori:1000 artikler enhver Wikipedia bør ha
Kategori:Alle artikler som trenger flere eller bedre referanser
Kategori:Artikler som trenger flere eller bedre referanser 2022-01
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon