Redigerer
Entropi
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
==Anvendelser i dag== Begrepet ble opprinnelig innført for å bedre forståelsen av omsetning av energi, og spesielt for bruk av varmeenergi i dampmaskiner til å utføre arbeid, men i tillegg til dette rent praktiske aspektet, har entropibegrepet fått en utbredelse langt utover slike praktiske anvendelser. Dette skyldes i stor grad de statistiske ideene fra Boltzmann og at termodynamikken er så generell at den også kommer til anvendelse i systemer som må beskrives kvantemekanisk. Dette ble spesielt klart etter at [[Max Planck|Planck]] utviklet sin teori for [[varmestråling]]en som i utgangspunktet var basert på rene entropibetraktninger. I kjemi ble entropi av stor betydning for å forstå forskjellige, kjemiske reaksjoner og likevekter. Fra begynnelsen av var entropi en sentral størrelse innen [[statistisk fysikk]] og dens beskrivelse av materien omkring oss i alle faser. I dag benyttes begrepet i [[astrofysikk]] og utforskningen av stjerner og deres kollaps. I nyere tid har [[Stephen Hawking]] vist at også [[sorte hull]] kan tilordnes en entropi og derfor også en temperatur. Hele [[Universet]] kan betraktes som et isolert system med jevnt økende entropi og spiller dermed også en sentral rolle i moderne [[kosmologi]]. Entropi i dag benyttes innen tre områder; termodynamikk, statistisk mekanikk og informasjonsteori. I termodynamikken betyr entropi fordeling og likevekt over tid inntil ulikhetene er utjevnet. For eksempel vil et livløst objekt som er varmere eller kaldere enn omgivelsene etter hvert miste eller absorbere varme helt til objekt og omgivelser har samme temperatur, eller en saltløsning som tømmes i en beholder med ferskvann vil fordele seg i vannet inntil konsentrasjonen er den samme overalt. I statistisk mekanikk handler det om [[sannsynlighet]] i forhold til antall mulige utfall. En mynt som knipses har to mulige utfall; mynt eller krone, og dermed 50% sjanse for å ende opp som det ene eller andre. Gjøres dette et fåtall ganger er det mulig å oppnå samme resultat hver gang. Men sannsynligheten blir mindre desto oftere det knipses. Jo flere forsøk, jo mer vil summen av resultatene nærme seg den statistiske sannsynligheten og dermed den maksimale entropi. Samme tendens gjelder om en terning kastes tilstrekkelig mange ganger, bare at fordelingen her er 1/6 i stedet for 1/2. Blant de minste bestanddelene innen kjemi (atomer og molekyler) vil antallet i en væske være så høyt at maks entropi så å si er oppnådd, og det oppstår lovmessighet; sannsynligheten for at summen av alle atomenes og molekylenes mulige utfall på noe som helst tidspunkt skal avvike fra det forventede er så mikroskopisk at den i praksis ligger på null. I informasjonsteori er entropi det samme som uforutsigbarhet. En linje bestående av repetisjon av et eneste tegn etter hverandre vil være fullstendig forutsigbart, og entropi er dermed fraværende. En tekst som består av kjente ord og overholder de grammatiske regler vil være mer uforutsigbart, og med det mer entropisk, selv om det i stor grad er mulig å gjette seg til hvilket tegn som er det neste ut ifra informasjonen man har tilegnet seg fra de foregående ordene og setningene. Inneholder teksten skrivefeil og brudd på grammatikkreglene øker entropien mens forutsigbarheten minker, og sannsynligheten for tap av informasjon øker i takt med antall feil. En linje satt tilfeldig sammen av en samling helt tilfeldige tegn har ingen informasjon å vise til, forutsigbarheten er null og entropien maksimal.<ref>[https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0050142 Survival of the Likeliest? - PLOS]</ref>
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon